

venvs

[image: PyPI version] [https://pypi.org/project/venvs/] [image: Supported Python versions] [https://pypi.org/project/venvs/] [image: Build status] [https://github.com/Julian/venvs/actions?query=workflow%3ACI]

venvs is a tool for configuring, in a single file, a set of
virtualenvs, which packages to install into each, and any binaries to
make globally available from within.

Installation

The usual:

$ pip install venvs

Usage

The best way to use venvs is by creating a file named
~/.local/share/virtualenvs/virtualenvs.toml. Here’s an example of what goes
in it:

[virtualenv.development]
install = [
 "pudb",
 "twisted",
]
link = ["trial"]

[virtualenv.app]
install = ["$DEVELOPMENT/myapp"]

After creating the above, running venvs converge will create 2
virtualenvs, one called “development” with pudb and twisted installed
into it and trial linked from within it onto your PATH, and a second
called “app” installing the corresponding directory.

For a more intricate example, have a look at my own virtualenvs.toml [https://github.com/Julian/dotfiles/blob/master/.local/share/virtualenvs/virtualenvs.toml].

That’s about all you need to know. If you insist on reading further
though, venvs has an older, not-very-recommended mutable interface
which allows you to create virtualenvs in a central location without
tracking them in a config file (or converging them). For that, usage
is similar to mkvirtualenv, although venvs passes arguments
directly through to virtualenv:

$ venvs create nameofvenv -- -p pypy

will create a virtual environment in an appropriate platform-specific
data directory, or in the directory specified by WORKON_HOME for
compatibility with virtualenvwrapper.

Single-Purpose Virtualenvs

A common use case for virtualenvs is for single-purpose installations, e.g.:

“I want to install fabric and give it its own virtualenv so that its
dependencies can be independently upgraded, all while still being able to use
the fab binary globally”.

venvs supports a --link option for this use case:

$ venvs create -i fabric --link fab

will create a virtualenv for fabric (in the same normal location), but will
symlink the fab binary from within the virtualenv into your
~/.local/bin directory.

(You may have heard of pipsi [https://github.com/mitsuhiko/pipsi] which is a
similar tool for this use case, but with less customization than I would have
liked.)

Temporary Virtualenvs

I also find mktmpenv useful for quick testing. To support its use case,
venvs currently supports a different but similar style of temporary
virtualenv.

Invoking:

$ venv=$(venvs temporary)

in your shell will create (or re-create) a global temporary virtualenv,
and print its bin/ subdirectory (which in this case will be then
stored in the venv variable). It can subsequently be used by, e.g.:

$ $venv/python

or:

$ $venv/pip ...

et cetera.

You may prefer using:

$ cd $(venvs temporary)

as your temporary venv workflow if you’re into that sort of thing instead.

The global virtualenv is cleared each time you invoke venvs temporary.
Unless you care, unlike virtualenvwrapper’s mktmpenv, there’s no
need to care about cleaning it up, whenever it matters for the next
time, it will be cleared and overwritten.

venvs may support the more similar “traditional” one-use virtualenv in the
future, but given that it does not activate virtualenvs by default (see below),
the current recommendation for this use case would be to simply use the
virtualenv binary directly.

The 5 Minute Tutorial

Besides the venvs for named-virtualenv creation and venvs
temporary for temporary-virtualenv creation described above:

$ venvs find name foo

will output (to standard output) the path to a virtualenv with the given name
(see also --existing-only), and:

$ venvs remove foo

will remove it.

There are a number of other slight variants, see the --help information for
each of the three binaries.

Real documentation to come (I hope)

Why don’t I use virtualenvwrapper?

virtualenvwrapper is great! I’ve used it for a few years. But I’ve
slowly settled on a much smaller subset of its functionality that I like
to use. Specifically:

	I don’t like activating virtualenvs.

virtualenvs are magical and hacky enough on their own, and piling
activation on top just makes things even more messy for me, especially
when moving around between different projects in a shell. Some people
use cd tricks to solve this, but I just want simplicity.

	I don’t need project support.

I’ve never attached a project to a virtualenv. I just use a naming
convention, naming the virtualenv with the name of the repo (with simple
coercion), and then using dynamic directory expansion in my shell [https://github.com/Julian/dotfiles/blob/4376b05de0f7af9e7ecb2e3596b8830c806c5d71/.config/zsh/.zshrc#L59-L92]
to handle association.

Basically, I just want a thing that is managing a central repository of
virtualenvs for me. So that’s what venvs does.

Contents

Index

 nav.xhtml

 Table of Contents

 		
 venvs

_static/file.png

_static/minus.png

_static/plus.png

