
venvs
Release 2024.5.2.dev2+g36ebc8e

Julian Berman

Apr 22, 2024

CONTENTS

1 Installation 3

2 Usage 5

3 Single-Purpose Virtualenvs 7

4 Temporary Virtualenvs 9

5 The 5 Minute Tutorial 11

6 Why don’t I use virtualenvwrapper? 13

7 Contents 15

i

ii

venvs, Release 2024.5.2.dev2+g36ebc8e

venvs is a tool for configuring, in a single file, a set of virtualenvs, which packages to install into each, and any binaries
to make globally available from within.

CONTENTS 1

https://pypi.org/project/venvs/
https://pypi.org/project/venvs/
https://github.com/Julian/venvs/actions?query=workflow%3ACI

venvs, Release 2024.5.2.dev2+g36ebc8e

2 CONTENTS

CHAPTER

ONE

INSTALLATION

The usual:

$ pip install venvs

3

venvs, Release 2024.5.2.dev2+g36ebc8e

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

The best way to use venvs is by creating a file named ~/.local/share/virtualenvs/virtualenvs.toml. Here’s
an example of what goes in it:

[virtualenv.development]
install = [

"pudb",
"twisted",

]
link = ["trial"]

[virtualenv.app]
install = ["$DEVELOPMENT/myapp"]

After creating the above, running venvs converge will create 2 virtualenvs, one called “development” with pudb
and twisted installed into it and trial linked from within it onto your PATH, and a second called “app” installing the
corresponding directory.

For a more intricate example, have a look at my own virtualenvs.toml.

That’s about all you need to know. If you insist on reading further though, venvs has an older, not-very-recommended
mutable interface which allows you to create virtualenvs in a central location without tracking them in a config file (or
converging them). For that, usage is similar to mkvirtualenv, although venvs passes arguments directly through to
virtualenv:

$ venvs create nameofvenv -- -p pypy

will create a virtual environment in an appropriate platform-specific data directory, or in the directory specified by
WORKON_HOME for compatibility with virtualenvwrapper.

5

https://github.com/Julian/dotfiles/blob/master/.local/share/virtualenvs/virtualenvs.toml

venvs, Release 2024.5.2.dev2+g36ebc8e

6 Chapter 2. Usage

CHAPTER

THREE

SINGLE-PURPOSE VIRTUALENVS

A common use case for virtualenvs is for single-purpose installations, e.g.:

“I want to install fabric and give it its own virtualenv so that its dependencies can be independently upgraded, all while
still being able to use the fab binary globally”.

venvs supports a --link option for this use case:

$ venvs create -i fabric --link fab

will create a virtualenv for fabric (in the same normal location), but will symlink the fab binary from within the
virtualenv into your ~/.local/bin directory.

(You may have heard of pipsi which is a similar tool for this use case, but with less customization than I would have
liked.)

7

https://github.com/mitsuhiko/pipsi

venvs, Release 2024.5.2.dev2+g36ebc8e

8 Chapter 3. Single-Purpose Virtualenvs

CHAPTER

FOUR

TEMPORARY VIRTUALENVS

I also find mktmpenv useful for quick testing. To support its use case, venvs currently supports a different but similar
style of temporary virtualenv.

Invoking:

$ venv=$(venvs temporary)

in your shell will create (or re-create) a global temporary virtualenv, and print its bin/ subdirectory (which in this case
will be then stored in the venv variable). It can subsequently be used by, e.g.:

$ $venv/python

or:

$ $venv/pip ...

et cetera.

You may prefer using:

$ cd $(venvs temporary)

as your temporary venv workflow if you’re into that sort of thing instead.

The global virtualenv is cleared each time you invoke venvs temporary. Unless you care, unlike
virtualenvwrapper’s mktmpenv, there’s no need to care about cleaning it up, whenever it matters for the next time,
it will be cleared and overwritten.

venvs may support the more similar “traditional” one-use virtualenv in the future, but given that it does not activate
virtualenvs by default (see below), the current recommendation for this use case would be to simply use the virtualenv
binary directly.

9

venvs, Release 2024.5.2.dev2+g36ebc8e

10 Chapter 4. Temporary Virtualenvs

CHAPTER

FIVE

THE 5 MINUTE TUTORIAL

Besides the venvs for named-virtualenv creation and venvs temporary for temporary-virtualenv creation described
above:

$ venvs find name foo

will output (to standard output) the path to a virtualenv with the given name (see also --existing-only), and:

$ venvs remove foo

will remove it.

There are a number of other slight variants, see the --help information for each of the three binaries.

Real documentation to come (I hope)

11

venvs, Release 2024.5.2.dev2+g36ebc8e

12 Chapter 5. The 5 Minute Tutorial

CHAPTER

SIX

WHY DON’T I USE VIRTUALENVWRAPPER?

virtualenvwrapper is great! I’ve used it for a few years. But I’ve slowly settled on a much smaller subset of its
functionality that I like to use. Specifically:

• I don’t like activating virtualenvs.

virtualenvs are magical and hacky enough on their own, and piling activation on top just makes things even more
messy for me, especially when moving around between different projects in a shell. Some people use cd tricks
to solve this, but I just want simplicity.

• I don’t need project support.

I’ve never attached a project to a virtualenv. I just use a naming convention, naming the virtualenv with the name
of the repo (with simple coercion), and then using dynamic directory expansion in my shell to handle association.

Basically, I just want a thing that is managing a central repository of virtualenvs for me. So that’s what venvs does.

13

https://github.com/Julian/dotfiles/blob/4376b05de0f7af9e7ecb2e3596b8830c806c5d71/.config/zsh/.zshrc#L59-L92

venvs, Release 2024.5.2.dev2+g36ebc8e

14 Chapter 6. Why don’t I use virtualenvwrapper?

CHAPTER

SEVEN

CONTENTS

15

	Installation
	Usage
	Single-Purpose Virtualenvs
	Temporary Virtualenvs
	The 5 Minute Tutorial
	Why don’t I use virtualenvwrapper?
	Contents

